Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 146: 109419, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301812

RESUMO

Peroxiredoxins (Prxs) are a family of antioxidant enzymes crucial for shielding cells against oxidative damage from reactive oxygen species (ROS). In this study, we cloned and analyzed two grass carp peroxiredoxin genes, CiPrx5 and CiPrx6. These genes exhibited ubiquitous expression across all sampled tissues, with their expression levels significantly modulated upon exposure to grass carp reovirus (GCRV). CiPrx5 was localized in the mitochondria, while CiPrx6 was uniformly distributed in the whole cells. Transfection or transformation of CiPrx5 and CiPrx6 into fish cells or E. coli significantly enhanced host resistance to H2O2 and heavy metals, leading to increased cell viability and reduced cell apoptosis rates. Furthermore, purified recombinant CiPrx5 and CiPrx6 proteins effectively protected DNA against oxidative damage. Notably, overexpression of both peroxiredoxins in fish cells effectively inhibited GCRV replication, reduced intracellular ROS levels induced by GCRV infection and H2O2 treatment, and induced autophagy. Significantly, these functions of CiPrx5 and CiPrx6 in GCRV replication and ROS mitigation were abolished upon treatment with an autophagy inhibitor. In summation, our findings suggest that grass carp Prx5 and Prx6 promote autophagy to inhibit GCRV replication, decrease intracellular ROS, and provide protection against oxidative stress.


Assuntos
Carpas , Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Reoviridae , Animais , Carpas/genética , Carpas/metabolismo , Espécies Reativas de Oxigênio , Peroxirredoxinas/genética , Escherichia coli , Peróxido de Hidrogênio , Infecções por Reoviridae/prevenção & controle , Estresse Oxidativo , Autofagia , Doenças dos Peixes/prevenção & controle
2.
Int J Biol Macromol ; 256(Pt 2): 128454, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016608

RESUMO

Superoxide dismutases (SODs) are potent antioxidants crucial for neutralizing reactive oxygen species (ROS) and protecting organisms from oxidative damage. In this study, we successfully cloned and analyzed two SOD genes, CiSOD1 and CiSOD2, from grass carp (Ctenopharyngodon idellus). CiSOD1 consists of two CuZn signature motifs and two conserved cysteine residues, while CiSOD2 contains a single Mn signature motif. The expression of CiSODs was found to be ubiquitous across all examined tissues, with their expression levels significantly altered after stimulation by grass carp reovirus (GCRV) or pathogen-associated molecular patterns (PAMPs). CiSOD1 was observed to be uniformly distributed in the cytoplasm, whereas CiSOD2 localized in the mitochondria. Escherichia coli transformed with both CiSODs demonstrated enhanced host resistance to H2O2 and heavy metals. Additionally, purified recombinant CiSOD proteins effectively protected DNA against oxidative damage. Furthermore, overexpression of CiSODs in fish cells reduced intracellular ROS, inhibited autophagy, and then resulted in the promotion of GCRV replication. Knockdown of CiSODs showed opposite trends. Notably, these roles of CiSODs in autophagy and GCRV replication were reversed upon treatment with an autophagy inducer. In summary, our findings suggest that grass carp SODs play an important role in decreasing intracellular ROS levels, inhibiting autophagy, and subsequently promoting GCRV replication.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Animais , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/genética , Carpas/genética , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Reoviridae/metabolismo , Autofagia/genética , Doenças dos Peixes/genética
3.
Sensors (Basel) ; 23(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37631801

RESUMO

We propose an improved BM3D algorithm for block-matching based on UNet denoising network feature maps and structural similarity (SSIM). In response to the traditional BM3D algorithm that directly performs block-matching on a noisy image, without considering the deep-level features of the image, we propose a method that performs block-matching on the feature maps of the noisy image. In this method, we perform block-matching on multiple depth feature maps of a noisy image, and then determine the positions of the corresponding similar blocks in the noisy image based on the block-matching results, to obtain the set of similar blocks that take into account the deep-level features of the noisy image. In addition, we improve the similarity measure criterion for block-matching based on the Structural Similarity Index, which takes into account the pixel-by-pixel value differences in the image blocks while fully considering the structure, brightness, and contrast information of the image blocks. To verify the effectiveness of the proposed method, we conduct extensive comparative experiments. The experimental results demonstrate that the proposed method not only effectively enhances the denoising performance of the image, but also preserves the detailed features of the image and improves the visual quality of the denoised image.

4.
Int Dent J ; 73(6): 819-827, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37316412

RESUMO

PURPOSE: This study aimed to evaluate the association between interdental cleaning and untreated root caries amongst middle-aged and older adults in the US. MATERIALS AND METHODS: Data were obtained from the National Health and Nutrition Examination Survey (NHANES) (2015-2016 and 2017-2018). Adults aged ≥40 years who underwent full mouth examination and root caries assessment were included. Participants were classified based on their interdental cleaning frequency as none, 1-3 d/wk, and 4-7 d/wk. Associations between interdental cleaning and untreated root caries were assessed using a weighted multivariable logistic regression model adjusted for sociodemographics, general behaviour, general health condition, oral conditions, oral health behavior, and dietary factors. Subgroup analyses stratified by age and sex were performed after adjusting for covariates in the logistic regression models. RESULTS: The prevalence of untreated root caries was 15.3% amongst 6217 participants. Interdental cleaning for 4-7 d/wk was a significant risk factor (odds ratio, 0.67; 95% confidence interval, 0.52-0.85). It was associated with a 40% reduction in the risk of untreated root caries in participants aged 40 to 64 years and a 37% reduction in women. Untreated root caries was also significantly associated with age, family income, smoking status, root restoration, number of teeth, untreated coronal caries, and recent dental visit. CONCLUSIONS: Interdental cleaning for 4-7 d/wk was associated with fewer untreated root caries amongst middle-aged adults and women in the US. The risk of root caries increases with age. Low family income was a risk indicator for root caries amongst middle-aged adults. Additionally, smoking, root restoration, number of teeth, untreated coronal caries, and recent dental visits were common risk factors for root caries in middle-aged and older people in the US.


Assuntos
Cárie Dentária , Doenças Periodontais , Cárie Radicular , Pessoa de Meia-Idade , Humanos , Feminino , Estados Unidos/epidemiologia , Idoso , Cárie Radicular/epidemiologia , Inquéritos Nutricionais , Cárie Dentária/epidemiologia , Modelos Logísticos
5.
Ageing Res Rev ; 87: 101899, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36871781

RESUMO

Alzheimer's disease (AD), a chronic and progressive neurodegenerative disease, generates a serious threat to the health of the elderly. The AD brain is microscopically characterized by amyloid plaques and neurofibrillary tangles. There are still no effective therapeutic drugs to restrain the progression of AD though much attention has been paid to exploit AD treatments. Ferroptosis, a type of programmed cell death, has been reported to promote the pathological occurrence and development of AD, and inhibition of neuronal ferroptosis can effectively improve the cognitive impairment of AD. Studies have shown that calcium (Ca2+) dyshomeostasis is closely related to the pathology of AD, and can drive the occurrence of ferroptosis through several pathways, such as interacting with iron, and regulating the crosstalk between endoplasmic reticulum (ER) and mitochondria. This paper mainly reviews the roles of ferroptosis and Ca2+ in the pathology of AD, and highlights that restraining ferroptosis through maintaining the homeostasis of Ca2+ may be an innovative target for the treatment of AD.


Assuntos
Doença de Alzheimer , Ferroptose , Doenças Neurodegenerativas , Humanos , Idoso , Doença de Alzheimer/metabolismo , Cálcio/metabolismo , Homeostase
6.
Exp Cell Res ; 422(1): 113436, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435220

RESUMO

Oxidative stress-induced ferroptosis of retinal pigment epithelium (RPE) cells contributes to retinal degenerative diseases. The antioxidant molecule hydrogen sulfide (H2S) regulates oxidative stress response, but its effect on the ferroptosis of RPE cells is unclear. In this study, sodium hydrosulfide (NaHS) was used as an exogenous H2S donor to intervene tert-butyl hydroperoxide (t-BHP)-induced ferroptosis of APRE-19 cells. We found that NaHS pretreatment attenuates t-BHP-induced oxidative stress and ferroptosis. Analysis of mRNA-sequencing coupled with FerrDb database identified nuclear factor erythroid-2-related factor 2 (NRF2) as a primary target for the cytoprotective role of H2S. NRF2 inhibitor ML385 reverses the effects of H2S on ferroptosis. Biochemical analysis revealed that H2S stabilizes NRF2. H2S decreases the interaction between NRF2 and KEAP1, but enhances the interaction between KEAP1 and p62. These results suggest that H2S activates the non-canonical NRF2-KEAP1 pathway. Further study demonstrated that H2S stimulates AMPK to interact and phosphorylate p62. Additionally, inhibiting AMPK or knocking down p62 blocks the effects of H2S. We speculate that targeting the non-canonical NRF2-KEAP1 pathway by H2S-based drug may benefit the treatment of retinal degenerative diseases.


Assuntos
Ferroptose , Sulfeto de Hidrogênio , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Estresse Oxidativo , terc-Butil Hidroperóxido/farmacologia , Espécies Reativas de Oxigênio/metabolismo
7.
mBio ; 13(6): e0229722, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36445081

RESUMO

Grass carp is an important commercial fish in China that is plagued by various diseases, especially the hemorrhagic disease induced by grass carp reovirus (GCRV). Nevertheless, the mechanism by which GCRV hijacks the host metabolism to complete its life cycle is unclear. In this study, we performed lipidomic analysis of grass carp liver samples collected before and after GCRV infection. GCRV infection altered host lipid metabolism and increased de novo fatty acid synthesis. Increased de novo fatty acid synthesis induced accumulation of lipid droplets (LDs). LDs are associated with GCRV viroplasms, as well as viral proteins and double-stranded RNA. Pharmacological inhibition of LD formation led to the disappearance of viroplasms, accompanied by decreased viral replication capacity. Moreover, transmission electron microscopy revealed LDs in close association with the viroplasms and mounted GCRV particles. Collectively, these data suggest that LDs are essential for viroplasm formation and are sites for GCRV replication and assembly. Our results revealed the detailed molecular events of GCRV hijacking host lipid metabolism to benefit its replication and assembly, which may provide new perspective for the prevention and control of GCRV. IMPORTANCE Grass carp reovirus (GCRV) is the most virulent pathogen in the genus Aquareovirus, which belongs to the family Reoviridae. GCRV-induced hemorrhagic disease is a major threat to the grass carp aquaculture industry. Viruses are obligate intracellular parasites that require host cell machinery to complete their life cycle; the mechanism by which GCRV hijacks the host metabolism to benefit viral replication and assembly remains unclear. Our study demonstrated that GCRV infection alters host lipid metabolism and increases de novo fatty acid synthesis. The increased de novo fatty acid synthesis induced accumulation of LDs, which act as sites or scaffolds for GCRV replication and assembly. Our findings illustrate a typical example of how the virus hijacks cellular organelles for replication and assembly and hence may provide new insights for the prevention and control of GCRV.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Animais , Gotículas Lipídicas , Reoviridae/fisiologia , Infecções por Reoviridae/genética , Ácidos Graxos
8.
Antioxidants (Basel) ; 11(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36290675

RESUMO

Peroxiredoxins are a family of antioxidant proteins that protect cells from oxidative damage caused by reactive oxygen species (ROS). Herein, the peroxiredoxin 3 gene from grass carp (Ctenopharyngodon idellus), named CiPrx3, was cloned and analyzed. The full-length cDNA of CiPrx3 is 1068 bp long, with a 753 bp open reading frame (ORF) that contains a thioredoxin-2 domain, two peroxiredoxin signature motifs, and two highly conserved cysteine residues. CiPrx3 was ubiquitously expressed in all the tested tissues, while its expression level was altered significantly after exposure to grass carp reovirus (GCRV) and pathogen-associated molecular patterns (PAMPs). CiPrx3 was localized in the mitochondria of transfected cells and concentrated in the nucleus after poly (I:C) treatment. Transformation of CiPrx3 into Escherichia coli enhanced host resistance to H2O2 and heavy metals. Purified recombinant CiPrx3 proteins could protect DNA against oxidative damage. Overexpression of CiPrx3 in fish cells reduced intracellular ROS, increased cell viability, and decreased cell apoptosis caused by H2O2 stimulation and GCRV infection. Further study indicated that CiPrx3 induced autophagy to inhibit GCRV replication in fish cells. Collectively, these results imply that grass carp Prx3 elevates host antioxidant activity and induces autophagy to inhibit GCRV replication.

9.
Molecules ; 27(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296589

RESUMO

Advanced glycation end products (AGEs) are the compounds produced by non-enzymatic glycation of proteins, which are involved in diabetic-related complications. To investigate the potential anti-glycation activity of Myriocin (Myr), a fungal metabolite of Cordyceps, the effect of Myr on the formation of AGEs resulted from the glycation of bovine serum albumin (BSA) and the interaction between Myr and BSA were studied by multiple spectroscopic techniques and computational simulations. We found that Myr inhibited the formation of AGEs at the end stage of glycation reaction and exhibited strong anti-fibrillation activity. Spectroscopic analysis revealed that Myr quenched the fluorescence of BSA in a static process, with the possible formation of a complex (approximate molar ratio of 1:1). The binding between BSA and Myr mainly depended on van der Waals interaction, hydrophobic interactions and hydrogen bond. The synchronous fluorescence and UV-visible (UV-vis) spectra results indicated that the conformation of BSA altered in the presence of Myr. The fluorescent probe displacement experiments and molecular docking suggested that Myr primarily bound to binding site 1 (subdomain IIA) of BSA. These findings demonstrate that Myr is a potential anti-glycation agent and provide a theoretical basis for the further functional research of Myr in the prevention and treatment of AGEs-related diseases.


Assuntos
Produtos Finais de Glicação Avançada , Soroalbumina Bovina , Soroalbumina Bovina/química , Simulação de Acoplamento Molecular , Produtos Finais de Glicação Avançada/metabolismo , Corantes Fluorescentes , Sítios de Ligação , Espectrometria de Fluorescência , Termodinâmica , Ligação Proteica , Espectrofotometria Ultravioleta
10.
Front Oncol ; 12: 917667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110941

RESUMO

It has long been evident that physical exercise reduces the risk of cancer and improves treatment efficacy in tumor patients, particularly in lung cancer (LC). Several molecular mechanisms have been reported, but the mechanisms related to microRNAs (miRNAs) are not well understood. MiRNAs modulated various basic biological processes by negatively regulating gene expression and can be transmitted between cells as signaling molecules. Recent studies have shown that miRNAs are actively released into the circulation during exercise, and are deeply involved in cancer pathology. Hence, the role of exercise intervention in LC treatment may be further understood by identifying miRNAs associated with LC and physical activity. Here, miRNAs expression datasets related to LC and exercise were collected to screen altered miRNAs. Further bioinformatic approaches were performed to analyze the value of the selected miRNAs. The results identified 42 marker miRNAs in LC, of which three core-miRNAs (has-miR-195, has-miR-26b, and has-miR-126) were co-regulated by exercise and cancer, mainly involved in cell cycle and immunity. Our study supports the idea that using exercise intervention as adjuvant therapy for LC patients. These core-miRNAs, which are down-regulated in cancer but elevated by exercise, may act as suppressors in LC and serve as non-invasive biomarkers for cancer prevention.

11.
Food Funct ; 13(14): 7885-7900, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35776077

RESUMO

The death of dopaminergic neurons is a dominant factor during the occurrence and development of Parkinson's disease (PD). Previous studies demonstrated that ferroptosis is implicated in the death of dopaminergic neurons. Besides, polyphenols have been proven to be effective in preventing the death of dopaminergic neurons. This work aims to explore the neuroprotective effect and mechanism of thonningianin A (Th A), a polyphenolic compound in natural plant foods, against 6-hydroxydopamine (6-OHDA)-induced ferroptosis in dopaminergic cells. The results of molecular docking and other binding assays collectively demonstrated that Th A can strongly target the Kelch domain of Keap1. Th A treatment significantly facilitated the nuclear factor erythroid 2-like 2 (Nrf2) nuclear translocation and subsequently increased the heme oxygenase-1 (HO-1) protein level through inhibiting the protein-protein interaction (PPI) of Keap1 and Nrf2. Compared with the nomifensine (Nomi) treatment, Th A had a more potent protective effect on 6-OHDA-induced ferroptosis during PD pathology in zebrafish, which was associated with assuaging the reduction of the total swimming distance, glutathione (GSH) depletion, iron accumulation, lipid peroxidation, and aggregation of α-synuclein (α-syn). Furthermore, Th A also exhibited a strong protective effect against 6-OHDA-induced ferroptosis in vitro in the human neuroblastoma cell line SH-SY5Y. Th A degraded Keap1 protein through activating Atg7-dependent autophagy. Additionally, Th A treatment facilitated the degradation of Keap1 protein by promoting the interaction between p62/SQSTM1 (sequestosome 1, hereafter referred to as p62) and Keap1. Taken together, our findings indicated that Th A protects dopaminergic cells against 6-OHDA-induced ferroptosis through activating the Nrf2-based cytoprotective system, thus enabling a potential application of Keap1-Nrf2 PPI inhibitors in the restraint of ferroptosis and treatment of PD.


Assuntos
Ferroptose , Neuroblastoma , Animais , Humanos , Autofagia , Proteína 7 Relacionada à Autofagia/metabolismo , Neurônios Dopaminérgicos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxidopamina , Transdução de Sinais , Peixe-Zebra/metabolismo
12.
iScience ; 25(7): 104533, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35784791

RESUMO

Ferroptosis is crucial to the pathology of many neurological diseases. Here, we found pre-treatment with myriocin, an inhibitor of de novo synthesis of sphingolipid, significantly decreased the erastin- or glutamate-induced ferroptosis of HT22 cells without requiring the recovery of intracellular glutathione. The transcriptome analysis of HT22 cells treated with or without myriocin identified the hypoxia-inducible factor 1 (HIF-1) pathway as a prime and novel drug target. Further study validated that HIF1α was required for the cytoprotective effects of myriocin. Myriocin treatment promoted the expression of HIF-1 pathway effectors including PDK1 and BNIP3 and altered the intracellular levels of glucose metabolites. Additionally, myriocin treatment stabilized HIF1α protein by decreasing its ubiquitination and proteasomal degradation. Similar effects of myriocin on HIF1α stabilization were also found in other mammalian cell lines indicating this is a common mechanism for the cytoprotective role of myriocin.

13.
Immun Ageing ; 19(1): 28, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655223

RESUMO

BACKGROUND: Grass carp are an important farmed fish in China that are infected by many pathogens, especially grass carp reovirus (GCRV). Notably, grass carp showed age-dependent susceptibility to GCRV; that is, grass carp not older than one year were sensitive to GCRV, while those over three years old were resistant to this virus. However, the underlying mechanism remains unclear. Herein, whole genome-wide DNA methylation and gene expression variations between susceptible five-month-old (FMO) and resistant three-year-old (TYO) grass carp were investigated aiming to uncover potential epigenetic mechanisms. RESULTS: Colorimetric quantification revealed that the global methylation level in TYO fish was higher than that in FMO fish. Whole-genome bisulfite sequencing (WGBS) of the two groups revealed 6214 differentially methylated regions (DMRs) and 4052 differentially methylated genes (DMGs), with most DMRs and DMGs showing hypermethylation patterns in TYO fish. Correlation analysis revealed that DNA hypomethylation in promoter regions and DNA hypermethylation in gene body regions were associated with gene expression. Enrichment analysis revealed that promoter hypo-DMGs in TYO fish were significantly enriched in typical immune response pathways, whereas gene body hyper-DMGs in TYO fish were significantly enriched in terms related to RNA transcription, biosynthesis, and energy production. RNA-seq analysis of the corresponding samples indicated that most of the genes in the above terms were upregulated in TYO fish. Moreover, gene function analysis revealed that the two genes involved in energy metabolism displayed antiviral effects. CONCLUSIONS: Collectively, these results revealed genome-wide variations in DNA methylation between grass carp of different ages. DNA methylation and gene expression variations in genes involved in immune response, biosynthesis, and energy production may contribute to age-dependent susceptibility to GCRV in grass carp. Our results provide important information for disease-resistant breeding programs for grass carp and may also benefit research on age-dependent diseases in humans.

14.
Math Biosci Eng ; 18(6): 8223-8244, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34814297

RESUMO

Spatial co-location pattern mining discovers the subsets of spatial features frequently observed together in nearby geographic space. To reduce time and space consumption in checking the clique relationship of row instances of the traditional co-location pattern mining methods, the existing work adopted density peak clustering to materialize the neighbor relationship between instances instead of judging the neighbor relationship by a specific distance threshold. This approach had two drawbacks: first, there was no consideration in the fuzziness of the distance between the center and other instances when calculating the local density; second, forcing an instance to be divided into each cluster resulted in a lack of accuracy in fuzzy participation index calculations. To solve the above problems, three improvement strategies are proposed for the density peak clustering in the co-location pattern mining in this paper. Then a new prevalence measurement of co-location pattern is put forward. Next, we design the spatial co-location pattern mining algorithm based on the improved density peak clustering and the fuzzy neighbor relationship. Many experiments are executed on the synthetic and real datasets. The experimental results show that, compared to the existing method, the proposed algorithm is more effective, and can significantly save the time and space complexity in the phase of generating prevalent co-location patterns.

15.
Front Immunol ; 12: 694965, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220856

RESUMO

Grass carp (Ctenopharyngodon idellus) is an important aquaculture species in China that is affected by serious diseases, especially hemorrhagic disease caused by grass carp reovirus (GCRV). Grass carp have previously shown age-dependent susceptibility to GCRV, however, the mechanism by which this occurs remains poorly understood. Therefore, we performed transcriptome and metabolome sequencing on five-month-old (FMO) and three-year-old (TYO) grass carp to identify the potential mechanism. Viral challenge experiments showed that FMO fish were susceptible, whereas TYO fish were resistant to GCRV. RNA-seq showed that the genes involved in immune response, antigen presentation, and phagocytosis were significantly upregulated in TYO fish before the GCRV infection and at the early stage of infection. Metabolome sequencing showed that most metabolites were upregulated in TYO fish and downregulated in FMO fish after virus infection. Intragroup analysis showed that arachidonic acid metabolism was the most significantly upregulated pathway in TYO fish, whereas choline metabolism in cancer and glycerophospholispid metabolism were significantly downregulated in FMO fish after virus infection. Intergroup comparison revealed that metabolites from carbohydrate, amino acid, glycerophospholipid, and nucleotide metabolism were upregulated in TYO fish when compared with FMO fish. Moreover, the significantly differentially expressed metabolites showed antiviral effects both in vivo and in vitro. Based on these results, we concluded that the immune system and host biosynthesis and metabolism, can explain the age-dependent viral susceptibility in grass carp.


Assuntos
Carpas/virologia , Doenças dos Peixes/virologia , Genômica , Metaboloma , Metabolômica , Infecções por Reoviridae/veterinária , Reoviridae/patogenicidade , Transcriptoma , Fatores Etários , Animais , Carpas/genética , Carpas/metabolismo , Células Cultivadas , Cromatografia Líquida/veterinária , Metabolismo Energético , Doenças dos Peixes/genética , Doenças dos Peixes/metabolismo , Perfilação da Expressão Gênica/veterinária , Interações Hospedeiro-Patógeno , RNA-Seq/veterinária , Infecções por Reoviridae/genética , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/virologia , Espectrometria de Massas em Tandem/veterinária
16.
Dev Comp Immunol ; 124: 104202, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34246624

RESUMO

Scavenger receptor class B type 2 (SR-B2) is a pattern recognition receptor involved in innate immunity in mammals; however, the immunological function of SR-Bs in fish remains unclear. In this study, the full-length cDNA sequences of SR-B2a and SR-B2b from grass carp (Ctenopharyngodon idellus) were cloned and designated as CiSR-B2a and CiSR-B2b. Multiple alignments and phylogenetic analyses deduced that CiSR-B2a and CiSR-B2b had the highest evolutionary conservation and were closely related to the zebrafish (Danio rerio) homologs, DrSR-B2a and DrSR-B2b, respectively. Both CiSR-B2a and CiSR-B2b were expressed in all the tested tissues, with the highest expression levels found in the hepatopancreas. In Ctenopharyngodon idellus kidney cells (CIK), CiSR-B2a and CiSR-B2b were mainly located in the cytoplasm, and a small amount located on the plasma membrane. After challenge with Grass Carp Reovirus (GCRV), the expression of CiSR-B2a and CiSR-B2b were significantly upregulated in the spleen (about 10.27 and 27.19 times higher than that at 0 day, p < 0.01). With CiSR-B2a or CiSR-B2b overexpressed in CIK, the relative copy number of GCRV in the cells was both significantly increased compared to that in the control group, indicating that CiSR-B2a and CiSR-B2b may be important proteins during the infection processes of GCRV.


Assuntos
Carpas/virologia , Reoviridae/patogenicidade , Receptores Depuradores Classe B/fisiologia , Sequência de Aminoácidos , Animais , Carpas/genética , Carpas/imunologia , Linhagem Celular , Membrana Celular/metabolismo , Citoplasma/metabolismo , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Expressão Gênica , Imunidade Inata , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Infecções por Reoviridae/genética , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Receptores Depuradores Classe B/genética , Alinhamento de Sequência , Distribuição Tecidual , Carga Viral/genética
17.
Dev Comp Immunol ; 125: 104213, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34324900

RESUMO

Peroxiredoxins (Prxs) are a group of evolutionarily conserved selenium-independent thiol-specific antioxidant proteins. In this study, the peroxiredoxin-4 (CiPrx4) gene from grass carp was identified and characterized. The full-length of CiPrx4 is 1339 bp, encoding 260 amino acids that contain two peroxiredoxin signature motifs and two GVL motifs. CiPrx4 belongs to the typical 2-Cys subfamily and shows the highest homology with Prx4 from Cyprinus carpio (95.4%). CiPrx4 mRNA was constitutively expressed in all tested tissues and was upregulated by grass carp reovirus and pathogen-associated molecular pattern (PAMP) stimulation. CiPrx4 was localized in the cytoplasm and co-localized with the endoplasmic reticulum. The purified CiPrx4 protein protected DNA from degradation in a dose-dependent manner. Moreover, the overexpression of CiPrx4 in Escherichia coli and fish cells showed apparent antioxidant and antiviral activities. Collectively, the results of the present study provide new insights for further understanding the functions of Prx4 in teleost fish.


Assuntos
Antioxidantes/metabolismo , Antivirais/metabolismo , Carpas/imunologia , Proteínas de Peixes/metabolismo , Peroxirredoxinas/metabolismo , Infecções por Reoviridae/imunologia , Reoviridae/fisiologia , Animais , Clonagem Molecular , Proteínas de Peixes/genética , Imunidade Inata , Moléculas com Motivos Associados a Patógenos/imunologia , Peroxirredoxinas/genética , Transcriptoma
18.
Cell Death Dis ; 12(3): 230, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658488

RESUMO

Sodium iodate (SI) is a widely used oxidant for generating retinal degeneration models by inducing the death of retinal pigment epithelium (RPE) cells. However, the mechanism of RPE cell death induced by SI remains unclear. In this study, we investigated the necrotic features of cultured human retinal pigment epithelium (ARPE-19) cells treated with SI and found that apoptosis or necroptosis was not the major death pathway. Instead, the death process was accompanied by significant elevation of intracellular labile iron level, ROS, and lipid peroxides which recapitulated the key features of ferroptosis. Ferroptosis inhibitors deferoxamine mesylate (DFO) and ferrostatin-1(Fer-1) partially prevented SI-induced cell death. Further studies revealed that SI treatment did not alter GPX4 (glutathione peroxidase 4) expression, but led to the depletion of reduced thiol groups, mainly intracellular GSH (reduced glutathione) and cysteine. The study on iron trafficking demonstrated that iron influx was not altered by SI treatment but iron efflux increased, indicating that the increase in labile iron was likely due to the release of sequestered iron. This hypothesis was verified by showing that SI directly promoted the release of labile iron from a cell-free lysate. We propose that SI depletes GSH, increases ROS, releases labile iron, and boosts lipid damage, which in turn results in ferroptosis in ARPE-19 cells.


Assuntos
Ferroptose/efeitos dos fármacos , Iodatos/toxicidade , Oxidantes/toxicidade , Epitélio Pigmentado da Retina/efeitos dos fármacos , Linhagem Celular , Cisteína/metabolismo , Glutationa/metabolismo , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/ultraestrutura
19.
Dev Comp Immunol ; 120: 104062, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33667530

RESUMO

The Krüppel-like factors (KLFs) are a family of transcription factors containing three highly conserved tandem zinc finger structures, and each member participates in multiple physiological and pathological processes. The publication of genome sequences and the application of bioinformatics tools have led to the discovery of numerous gene families in fishes. Here, 24 klf genes were re-annotated in grass carp. Subsequently, the number of klf family members were investigated in some representative vertebrate species. Then, a series of bioinformatics analysis showed that grass carp klfs in the same subfamily had similar genome structure patterns and conserved distribution patterns of motifs, which supported their molecular evolutionary relationships. Furthermore, the mRNA expression profiles showed that 24 grass carp klfs were ubiquitously expressed in 11 different tissues, and some of them displayed tissue-enriched expression patterns. Finally, the expressions of the evolutionarily expanded klf members (klf2a, 2b, 2l, 5a, 5b, 5l, 6a, 6b, 7a, 7b, 11a, 11b, 12a, 12b, 15 and 15l) during GCRV infection were also analyzed. The results suggested that grass carp klf genes with common evolutionary sources may share functional diversity and conservation. In conclusion, this study provides preliminary clues for further researches on grass carp klf members and their underlying transcriptional regulatory mechanisms during GCRV infection.


Assuntos
Carpas/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Fatores de Transcrição Kruppel-Like/genética , Reoviridae/imunologia , Animais , Carpas/genética , Carpas/virologia , Clonagem Molecular , Evolução Molecular , Doenças dos Peixes/virologia , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/imunologia , Fatores de Transcrição Kruppel-Like/metabolismo
20.
J Ethnopharmacol ; 268: 113617, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33307053

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Penthorum chinense Pursh is used for promoting diuresis and alleviating "heat"-associated disorders, which were considered to be related to diabetic in Traditional Chinese Medicine (TCM). AIMS OF THIS STUDY: Here, we aimed to evaluate the ability and underlying mechanism of the ethyl acetate fraction of Penthorum chinense Pursh stems (PSE) to inhibit vascular inflammation in high glucose (HG)-induced human umbilical vein endothelial cells (HUVEC cells). MATERIALS AND METHODS: HUVEC cells were pre-treated with PSE following HG treatment. The cell viability, mitochondrial membrane potential (MMP), lactate dehydrogenase (LDH) levels, reactive oxygen species (ROS) generation were analyzed. Inflammatory, and antioxidant,-related proteins were analyzed using western blotting. Molecular docking and drug affinity targeting experiments (DARTS) were utilized to analyze and verify the binding of the Keap1 protein and polyphenols of PSE. RESULTS: HG can significantly increase the activity of lactic dehydrogenase (LDH), destroy the mitochondrial membrane potential (MMP), and promote the generation of reactive oxygen species (ROS), while PSE treatment reversed these changes. Mechanistically, PSE inhibited NF-κB and inflammatory cytokines activation induced by HG through activating the expression of Nrf2 and its downstream antioxidant proteins Heme oxygenase-1 (HO-1), NAD (P)H Quinone Dehydrogenase 1 (NQO1), Glutamate cysteine ligase catalytic subunit (GCLC), Glutamate-cysteine ligase modifier (GCLM). Further study indicated that PSE activated Nrf2 antioxidant pathway mainly by the binding of primary polyphenols from PSE and the Keap1 protein. CONCLUSION: Taken together, the present data highlight the health benefits of polyphenols from Penthorum chinense Pursh. regarding diabetes, proving it to be an important source of health care products. Besides, binding of the Keap1 protein may be an effective strategy to activate Nrf2 antioxidant pathway and prevent diabetes.


Assuntos
Medicamentos de Ervas Chinesas/metabolismo , Glucose/toxicidade , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Polifenóis/metabolismo , Saxifragaceae , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/uso terapêutico , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/prevenção & controle , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Polifenóis/isolamento & purificação , Polifenóis/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...